
Minimizing Leakage Power in Aging-Bounded High-level

Synthesis with Design Time Multi-Vth Assignment

Yibo Chen, Yuan Xie
Pennsylvania State University

University Park, PA 16802

{yxc236, yuanxie}@cse.psu.edu

Yu Wang
Tsinghua University

Beijing, China 100084

yu-wang@tsinghua.edu.cn

Andres Takach
Mentor Graphics Corporation

Wilsonville, OR 97070

andres takach@mentor.com

Abstract—Aging effects (such as Negative Bias Temperature Instability

(NBTI)) can cause the temporal degradation of threshold voltage of

transistors, and have become major reliability concerns for deep-sub-

micron (DSM) designs. Meanwhile, leakage power dissipation becomes

dominant in total power as technology scales. While multi-threshold

voltage assignment has been shown as an effective way to reduce leakage,

the NBTI-degradation rates vary with different initial threshold voltage

assignment, and therefore motivates the co-optimizations of leakage re-

duction and NBTI mitigation. This paper minimizes leakage power during

high-level synthesis of circuits with bounded delay degradation (thus

guaranteed lifetime), using multi-Vth resource libraries. We first propose

a fast evaluation approach for NBTI-induced degradation of architectural

function units, and multi-Vth resource libraries are built with degradation

characterized for each function unit. We then propose an aging-bounded

high-level synthesis framework, within which the degraded delays are

used to guide the synthesis, and leakage power is optimized through the

proposed aging-aware resource rebinding algorithm. Experimental results

show that, the proposed techniques can effectively reduce the leakage

power with an extra 26% leakage reduction, compared to traditional

aging-unaware multi-Vth assignment approach.

I. INTRODUCTION

As technology scales, Negative Bias Temperature Instability

(NBTI) has become a major reliability concern for circuit designers.

NBTI manifests itself as an increase in the transistor threshold

voltage, causing the logic gates to slow down, and the critical paths

may no longer be able to meet the timing constraints. Circuit level

simulations have shown that NBTI can result in a 10% circuit delay

degradation after 10 years of service time [1], [2]. Meanwhile, the

leakage power of circuits has an exponential dependence on threshold

voltage [3]. During circuit operation time, NBTI-induced threshold

voltage degradation may severely affect the leakage power. Therefore,

ways to accurately analyze and reduce leakage power under the

impact of NBTI needs to be explored.

Recently, various techniques have been proposed to mitigate the

impact of NBTI, including gate sizing [4], synthesis [5], Input Vector

Control (IVC) [6], and Internal Node Control (INC) [7]. Most of the

techniques, however, focus at gate level or physical design level. As

the number of transistors integrated in a single chip reaches billions,

the pace of productivity gains has not kept up to address the increases

in design complexity. Consequently, we have seen a recent trend of

moving design abstraction to a higher level. High-level synthesis

(HLS), which is also known as behavioral synthesis, enables this shift

by providing automation to generate optimized hardware from a high-

level description of the functionality or algorithms to be implemented

in hardware. During HLS, many circuit optimization techniques can

be applied at the higher abstraction level (module level), such as

Multiple Supply Voltage (multi-Vdd) [8], Multiple Threshold Voltage

(multi-Vth) [9], [10], and Adaptive Body Biasing (ABB) [11]. HLS

provides an optimization platform for tackling the NBTI degradation

problem with reduced tuning complexity.

This work was supported in part by NSF CAREER 0643902, NSF 0916887,
NSFC 60870001, and a grant from SRC.

A principal approach for NBTI mitigation is guardbanding, in

which extra delay headroom is reserved at design time, allowing the

circuit to be degraded to a bounded extent. In order to keep the

degraded delay under the bound, circuits can be adaptively adjusted

at run time, using Adaptive Supply Voltage (ASV) [12], [13] or

Adaptive Body Biasing (ABB) [14], [15]. As run-time tuning usually

incurs extra control overhead, this paper focus on design time opti-

mization using multi-Vth assignment. Multi-Vth assignment has been

shown as an effective way to reduce circuit leakage power [9], [10],

[16]. However, prior research didn’t take into account the temporal

degradation of threshold voltage. In terms of NBTI mitigation, this

paper is based on the fact that high-Vth circuits degrades slower than

low-Vth circuits [2], [14], [15]. Therefore, the difference between

the delay of a high-Vth circuit and that of its low-Vth equivalent,

will become smaller and smaller as the degradation goes on. Given

the same delay guardband, high-Vth and low-Vth circuits may reach

the delay bound at about the same time (that means both circuits

guarantee the same lifetime), while high-Vth circuits consume much

less leakage power. Therefore, comparing with the NBTI-unaware

multi-Vth techniques, more high-Vth circuits can be used in favor of

leakage power saving. In this paper, the dependencies of leakage and

degradation rate on initial Vth settings are explored at the behavioral

synthesis level, yielding minimal leakage power under the given aging

bound.

This paper starts from accurate evaluation of delay degradation

and leakage power for architectural function units under different

threshold voltages, using the long-term dynamic NBTI model con-

sidering the impact of input signal probabilities [1], [2]. After the

multi-Vth library is characterized, a HLS framework with aging

bounds is presented, within which an initial scheduling and resource

binding is done according to the anticipated degraded delay of units

at the attainable lifetime bound, using only low-Vth resource units.

Static timing analysis is then performed on the scheduled and bound

result, generating timing slack information based on the degraded

delay. The “anticipated” slacks are used to guide a resource rebinding

algorithm, which iteratively replaces the resource unit with their high-

Vth equivalents where the delay difference can be fit into the slacks,

to reduce leakage power without violating the timing constraints. The

effectiveness of the proposed technique is demonstrated on a set of

industrial HLS benchmarks, and the improvements are compared with

the conventional aging-unaware multi-Vth implementations.

To the best of our knowledge, this is the first work to tackle the

co-optimization problem that minimize leakage power and mitigate

aging effect simultaneously at the behavioral synthesis level. The

contributions of this paper can be summarized as follows:

1) A fast evaluation approach for NBTI-induced degradation of

architectural function units is introduced, to build multi-Vth

resource libraries with modeled NBTI-induced degradation;

2) A framework for high-level synthesis with aging bounds is

established based on conventional HLS design flow;

978-1-4244-5767-0/10/$26.00 2010 IEEE

8C-1

689
Authorized licensed use limited to: Tsinghua University Library. Downloaded on July 12,2010 at 11:50:59 UTC from IEEE Xplore. Restrictions apply.

���

����

��������	
���� 	
���� ��������

�
����

� ��

� �
����

Fig. 1. Threshold voltage degradation during stress and recovery cycles.

3) A heuristic resource binding algorithm is proposed to minimize

leakage power under given aging bounds, using multi-Vth

resource libraries.

II. NBTI AND LEAKAGE CHARACTERIZATION

This section presents the NBTI model and the characterization flow

to capture the degradation and leakage power of architectural resource

units under different threshold voltages. A multi-Vth resource library

with degraded delay and leakage information is built for the proposed

aging-bounded high-level synthesis.

A. NBTI Modeling

NBTI can be described as the generation of interface charges at

the Si/SiO2 interface [17]. Depending on the bias condition of the

PMOS transistor, NBTI has two phases: stress phase and recovery

phase. In the stress phase (Vgs = 0), the holes in the channel

weaken the Si − H bonds, which results in the generation of the

positive interface charges and hydrogen species, correspondingly,

threshold voltage (Vth) of the PMOS transistors increases. During

the recovery phase (Vgs = V s), the interface traps can be annealed

by the hydrogen species and thus, Vth degradation (ΔVth) is partially

recovered. Dynamic NBTI model [2] captures the degradation when

the PMOS transistor undergoes alternate stress and recovery periods,

as shown in Fig. 1.

In order to predict the long term threshold voltage degradation

(ΔVth) due to NBTI, a compact model based on reaction-diffusion

is proposed in [2], in which ΔVth is modeled as a function of the

cycle period Tclk, duty ratio α, and circuit running time t:

|ΔVth,t| =
(√

K2
vαTclk

1− β
1/2n
t

)2n

, βt = 1− 2ξ1te +
√

ξ2C(1− αTclk)

2tox +
√
Ct

Kv =

(
qtox

εox

)3

K
2
Cox(Vgs − Vth)

√
C exp

(
2Eox

Eo

)
(1)

All the model parameters, if not aforementioned, are constants

from real measurement or data fitting. For the sake of brevity,

their meanings and values are not listed here (they can be found

in [2]). The model assumes a periodic rectangular waveform as the

gate input signal, while in real circuits, the signal waveforms are

usually random. In [1], it is analytically proven that, these random

waveforms can be converted to equivalent periodic rectangular signals

by ensuring that the signal probabilities of the random waveform and

that of the deterministic periodic waveform are the same. Therefore,

the above model is applicable to any input waveforms with the duty

ratio α to be set as the signal probability1. The model also shows

an exponential dependence between ΔVth and initial Vth. For a

single PMOS transistor at 45nm technology, the threshold voltage

degradation at 10-year lifetime against input signal probabilities

and initial threshold voltages is plotted in Fig. 2, which shows

the maximum Vth degradation varies from 0.11V to 0.16V with

1Here signal probability (SP) is defined as the probability that the signal is
at logic 0, since NBTI stress on PMOS devices is caused by logic 0 signals.

0
0.2

0.4
0.6

0.8
1 0.2

0.25
0.3

0.35
0.4

0

0.05

0.10

0.15

0.20

Threshold Voltage (V)Input Signal Probability

V
th

 D
e
g
ra

d
a
ti
o
n
 (

V
)

Fig. 2. Threshold voltage degradation against input signal probabilities and
initial threshold voltages for a PMOS transistor, showing higher input signal
probability and lower initial threshold voltage lead to larger degradation.

different input signal variabilities, and demonstrates the necessity of

considering the impact of signal probabilities during NBTI modeling,

especially for low-Vth circuits.

B. NBTI and Leakage Characterization for Multi-Vth Library Com-

ponents

With transistor-level NBTI models, gate-level NBTI evaluation can

be done by propagating gate input signal probabilities to internal tran-

sistors, computing the corresponding Vth degradation, and calibrating

the gate delay by SPICE simulations with the updated Vth values [5].

However, for large-scale circuits such as architectural function units

with thousands of gates, a fast and efficient evaluation flow utilizing

existing analysis tools is needed.

Fig. 3 shows the NBTI and leakage characterization flow used

to characterize architectural function units in this paper. The flow

starts with the creation of NBTI-characterized technology libraries.

Operation conditions, such as initial threshold voltage and anticipated

circuit lifetime (e.g., 10 years), are set priorly. Gate-level NBTI

models together with netlists of library cells are then fed to the library

characterization tool Liberty NCX from Synopsys [18], generating

standard cells with nominal delays to serve as a baseline, as well as

degraded cells with delays based on the appropriate ΔVth resulting

from the cells’ input probabilities. The names of the degraded

cells are annotated with the corresponding input probabilities as

suffixes. Leakage power of each cell is also characterized according

to the degraded threshold voltage. All the characterized cells are

then compiled into technology libraries for targeting and linking in

subsequent analysis steps.

Following cell library creation, synthesis is performed in Design

Compiler taking as input the Verilog/VHDL description of a function

unit, using the standard cells with nominal delay to produce a

cell netlist of the desired unit. The synthesized netlist is then fed

to Primetime PX to propagate the primary input probabilities to

the internal nodes of the netlist. As the signal probability of each

internal node is reported, the cells taking that node as input are

annotated with the signal probability value. In the case that a cell

takes multiple inputs, the value corresponding to the worst-case

NBTI-degradation is selected. With the annotated cell netlist, static

timing and power analysis using Primetime is performed against

the NBTI-characterized technology libraries, generating the NBTI-

induced delay and leakage power values for the given function unit.

As implementing multiple threshold voltages in a single chip

induces extra manufacturing cost, to reduce the tuning overhead, three

voltage levels are used in this work, and the multi-Vth technique is

applied at the granularity of function units. That means all the gates

inside a function unit operate at the same threshold voltage, and

threshold voltage only varies from function unit to function unit.

Correspondingly, the components in the resource library are then

8C-1

690
Authorized licensed use limited to: Tsinghua University Library. Downloaded on July 12,2010 at 11:50:59 UTC from IEEE Xplore. Restrictions apply.

	�
����
���

����
�������������
������
�����
��

��� �������
�����!
����
���������������

"�
����
���
���#�
�������������

"�
��������
��� �$�!���

������%&
$
����
�������������������
��������

	�

�����

���������
��

	'�(
������
���������

��$�
���
!����)����
(
�������

	'��

�
�
�!
	�

������!���
���
�

����
���
	������

�������������

 !������
"����

����*�����+
��
��#�
,.
�
��
�/
�
�

����*�����+
��
��#�
,.
�
��
�/
�
�

"�
����
���
���#�
�������������

��� �������
�����!�
����
���������������

	'��

�
�
�!
	�

������!���
���
�

����
���
	������

�������������

 !������
"����

0
�2��
	�

�
��

Fig. 3. NBTI and leakage power characterization flow for function units.
Design compiler, Primetime and Literby NCX are commercial tools from
Synopsys.

0
4

8
12

16
20

0.2

0.25

0.3

0.35

0.4
1

1.05

1.10

1.15

1.20

1.25

Lifetime (year)
Vth (v)

N
o

rm
a

liz
e

d
 D

e
la

y

Fig. 4. NBTI-induced delay degradation of a 16-bit adder against different
threshold voltages and circuit running time, showing that high-Vth adder has
a larger initial delay but a lower degradation rate.

characterized under low-Vth (LVT), medium-Vth (MVT) and high-

Vth (HVT) settings respectively, using the flow presented in previous

subsection. For a given set of resource library components, the

characterized results are compiled into a multi-Vth resource library,

in which each unit has multi-Vth implementations with equivalent

functionalities but different NBTI-induced delay and leakage power

values. Note that a finer-granularity multi-Vth assignment for function

units could be done at the gate level, which would increase the

complexity of the characterization and design space exploration at

high-level synthesis.

C. Motivation Example

Using the proposed characterization flow, the delay degradation

of a 16-bit adder (as a representative function unit) is sampled and

interpolated with different initial threshold voltages at different circuit

running times, as shown in Fig. 4. The figure shows that, high-Vth

circuits have a smaller degradation rate than low-Vth circuits.

Fig. 5 shows a motivation example for this paper. The circuit

has two paths with various number of function units in each path.

Given a performance (delay) requirement Dreq , a high-level synthesis

tool would try to assign high Vth to as many function units as

possible, such that the leakage reduction is maximized while the

delay requirement is still met. However, under the influence of NBTI,

during the Vth assignment, one must consider the delay degradation

as time goes by, and make sure that any path delay during the

specific product life time [0, Tlife] is not larger than the performance

requirement Dreq .

Fig. 5(a) shows a simple guardbanding solution to take into ac-

count the delay degradation due to NBTI, with extra delay headroom

is reserved at design time. One can simply tighten the performance

constraint to include the aging effect. For example, by simply setting

*��3

'�
��*�

*4

4

�

*��3

'�
��

'�
�4*�

4

�

���

���
�����+�
�
�
����
�����+�
���5�0
� #.
�
��
�.
�
 �����0
� #.
�
��
�.
�

��#�
�$�

'�
�4

6��*����
�
�$�� ���#����
��#�
�$�

'�
��

6��*����
�
�$�� ���#�

Fig. 5. The conceptual comparison of different optimization strategies: (a)
Conventional dual Vth assignment with tighter timing constraint D1 at design-
time; (b)NBTI-aware dual Vth assignment with timing constraint Dreq at
Tlife. Due to NBTI, gates with higher Vth has slower degradation.

a new timing constraint D1 (D1 = Dreq − ΔD, in which ΔD
is the maximum (worst-case) delay degradation) at design time,

one can obtain a Vth assignment as shown in Fig. 5(a), with

Dpath1
= Dpath2

≤ D1 at design time.

However, such a simple solution ignores the fact that function units

with lower Vth tend to age faster, while function units with higher Vth

has a slower degradation [2]. For example, in Fig. 5(a), path 2 has

a function unit with high Vth, while all function units in path 1 are

assigned low Vth. Consequently, path 2 has a slower aging rate. Being

aware of such a difference, one may be more aggressive to assign

more function units on path 2 with high Vth (Fig. 5(b)), even make

it slower than path 1 at design time (Fig. 5(b), D2 > D1), as long as

the path delay Dpath1
and Dpath2

at the end of life time Tlife can

still meet the timing constraint Dreq . Such an approach can achieve

extra leakage savings (Fig. 5(b) has one extra high-Vth function unit

than Fig. 5(a)). Note that Fig. 5 is only a simple illustrative example,

without considering resource sharing and pipelining, which makes

the analysis of performance/power analysis more complicated.

Consequently, based on the fact that function units with lower Vth

tend to age faster, while function units with higher Vth has a slower

degradation, and the leakage and delay degradation characterization

for resource library (in Section II-B), we propose a leakage optimiza-

tion behavioral synthesis framework considering aging effect. In this

framework, we use a new timing constraint (i.e.,Dpathi
at the end

of life time Tlife can meet the delay requirement Dreq), instead of

a design-time timing constraint (i.e.,Dpathi
at the design time can

meet the delay requirement Dreq − ΔD), such that extra leakage

savings can be achieved, by using more high-Vth function units.

III. LEAKAGE OPTIMIZATION IN AGING-BOUNDED HLS

In this section, we present the aging-bounded high-level synthesis

framework, and then propose the resource rebinding algorithm for

leakage power minimization under aging bounds.

A. Aging-bounded HLS

High-level synthesis (HLS) is the process of transforming a behav-

ioral description into a RTL description. Operations such as additions

and multiplications in the data flow graph (DFG) are scheduled into

control steps. During the resource allocation and binding stages,

operations are bound to corresponding function units in the resource

library meeting resource type and latency requirements.

In a conventional HLS flow, given the clock cycle period Dclk

(which is usually required by the design specification), the timing

requirement can be represented as follows:

∀i ∈ 1 . . . n, Slacki
.
= Dclk −Di ≥ 0 (2)

8C-1

691
Authorized licensed use limited to: Tsinghua University Library. Downloaded on July 12,2010 at 11:50:59 UTC from IEEE Xplore. Restrictions apply.

where n is the number of control steps, Di and Slacki are the

total delay (the maximum arrival time) and slack at control step

i, respectively. The resource binding step binds operations in each

control step to optimal function units from the resource library,

ensuring that all control steps have non-negative slacks.

In the case of NBTI, the circuit is degraded and the delay Di

gradually increases as time goes on. Eventually the slacks are used

up by the NBTI induced delay degradations, and the circuit fails due

to a timing violation. A common way to prevent circuits from failing

is guardbanding, which reserves extra timing headroom at design

time by relaxing Dclk (thus lower frequency), allowing circuits to

degrade to a certain extent. Generally, users will set a lower bound

T on the circuit lifetime, expecting the circuit to work flawlessly

until time T . How to set the optimal guardband on Dclk under the

attainable lifetime constraint and perform the design accordingly, are

the key problems to be solved in Aging-bounded HLS.

Aging-bounded HLS takes as input the lower bound of attain-

able circuit lifetime, computes the “anticipated” degraded delay of

function units at the lifetime bound, and uses the degraded delay

values to guide the resource selection and binding. In this case, given

an attainable lifetime bound of 10 years, the timing requirement in

Expression (2) will be changed to:

∀i ∈ 1 . . . n, Slacki,10year
.
= Dclk −Di,10year ≥ 0 (3)

where Di,10year and Slacki,10year are the total delay and slack at

control step i, measured at the service time of 10 years considering

degradation, respectively. Resource library characterized in Section II

is used in aging-bound HLS, and resource unit are selected according

to the new timing requirement. The circuit lifetime is then guaranteed

to be more than 10 years by this requirement. As mentioned in

Section II-C, an optimized resource selection between multi-Vth

function units considering both delay degradation and leakage power,

will lead to better design decisions.

B. Leakage Optimization in Aging-bounded HLS

With the NBTI-characterized multi-Vth resource library and the

aging-bounded HLS framework, the leakage power optimization

problem can be solved using traditional low-power resource binding

algorithms such as integer linear programming [19] and maximum

weight independent set [9]. However, the use of multiple threshold

voltages enlarges the design space by times and increases the compu-

tational complexity. Consequently, this paper uses a greedy heuristic

guided by search-and-replace, which has been shown to be practical

and effective [10].

The basic flow for leakage optimization in this paper is shown in

Fig. 6. The flow takes DFG descriptions of circuits as input, perfor-

mance initial scheduling and resource binding within conventional

HLS algorithms under the new lifetime bound, using only the basic

(low-Vth) resource units from the resource library characterized in

Section II. After that, the leakage power optimization is performed

in steps listed as follows.

1) Slacks Analysis in HLS: Timing slacks of each control step

at a given lifetime bound are defined in Expression (3). However, in

most HLS tools, operation chaining is used which schedules multiple

chained operations into one control step. In this case, each operation

may has its own non-zero slack. We borrow the methodology of slack

analysis at gate-level and apply it for HLS. The chained operations

are classified to different levels according to their “logic” (actually

architectural) depths. At each level, the maximum arrival time at the

output nodes is calculated, and each operation’s slack is calculated

as the difference between its arrival time and the maximum arrival

time at its level.

,"������+
��
�
�#�����.�
�

�
����	���!.��
��
�
!���
!�
�

��5�0
��
,.
�
��
�/
�
�

	���)�(
�
�����

����.����
����
!�
�

7����0
��
,.
�
��
�/
�
�

(��
����.
!�!

Fig. 6. The flow of leakage optimization in aging-bounded HLS.

�9

9
9

�

9

�

9

��9

9

� 	���)�7�0
��,/�� ��0
��,/�

��� ���

Fig. 7. Resource replacements used in the rebinding: (a) Replacing according
to resource slacks; (b) Replacing according to control step slacks.

2) Resource Replacements Used in the Rebinding: Corresponding

to the slack analysis, in order to fully explore the design space, two

types of resource replacements are used in the search for resource

binding:

• Replacing according to resource slacks, as shown in Fig. 7-(a).

In this case, the slacks are dedicated to the target resources to

be replaced. Therefore, the replacing is straightforward to find

function-equivalent units while the delay difference can be fit

into the slacks.

• Replacing according to control step slacks, as shown in Fig. 7-

(b). In this case, the slacks can be shared between the chained

operations. This complicates the problem. In order to find out

the best combination of resource bindings, we assign the whole

slack to each level of the chained operations in turn, converting

the control step slacks to resource slacks in each level, and

finding out the assignment that yields the best result. We omit the

possibility that control step slack is distributed among different

levels enabling simultaneous replacements in multiple levels,

according to the observation that control step slacks are usually

not significantly larger than the delay differences of resource

units.

3) The Resource Rebinding Algorithm: According to the resource

replacing strategies discussed above, a resource rebinding algorithm

is proposed to find out all the low-Vth candidates, and to replace them

with high-Vth equivalents for leakage power reduction. The outline of

the algorithm is shown in Fig. 8, where a DFG is initially scheduled

and bound to low-Vth (LVT) resource units, under a given lifetime

bound (Lines 1-3). The algorithm then traversals all the control steps

(Line 4). In each control step, chained operations are levelized and

slack analysis is performed (Lines 5-6), following by the assignment

of control step slack to each level of operations, and the subsequent

updating of resource slacks (Line 9). Resource rebinding is done

by replacing the low-Vth (LVT) units with the optimal equivalences

found by searching the medium-Vth (MVT) and high-Vth (HVT)

libraries, with the anticipated delay differences that can be fit into

the slacks (Line 10, 16-21). The optimal assignment of control step

8C-1

692
Authorized licensed use limited to: Tsinghua University Library. Downloaded on July 12,2010 at 11:50:59 UTC from IEEE Xplore. Restrictions apply.

slack is then determined by comparing the leakage savings resulting

from the corresponding resource replacement (Line 12-14).

NBTI-BINDING(DFG, T lifetime)

� Initialization

1 Multi-Vth Library Characterization with Lifetime Bound T lifetime

2 List Scheduling under Resource Usage Constraints

3 Initial Binding to LV T resources

� Aging-aware resource binding

4 for i← 1 to NumCSteps

do {
5 Levelize Operations in CStepi

6 Perform Slack Analysis

7 for j ← 1 to NumLevels

do {
8 Save Slacks(1..Levels, 1..Ops)
9 Slacks(j,−)← Slacks(j,−) + CStepSlack(i)

10 PSaving(j), Replaces(j)← RESREPLACE(Slacks)
11 Restore Slacks(1..Levels, 1..Ops)

}
12 Find j so that PSaving(j) = Max(Gain(1..NumLevels))
13 Apply Replaces(j) to DFG

14 TotalPSaving ← TotalPSaving + PSaving(j)
}

15 Report TotalPSaving and Updated DFG

16 RESREPLACE(Slacks)
17 for all ops in Current CStep

do {
18 Find Best Resource Candidates from MV T and HV T Libraries

according to Slacks

19 Perform Resource Replacement for ops

20 Record Replaces and Compute PSaving

}
21 Return Replaces and PSaving

Fig. 8. Outline of the aging-aware resource binding algorithm
As for the computational complexity, in the proposed algorithm,

the levelization and slack analysis on each control step can be done

by depth-first search which has the complexity of O(|V |log(|V |)),
and the sizes of the graphs (|V |) are usually small in each control

step of the DFG. For the resource replacement, according to the slack

updating strategy, each operations can have at most two slack values.

Assume that for each slack value the resource libraries are searched

exhaustively, the maximum loop depth with respect to all operations

is 2. Therefore, the overall run time for the proposed resource binding

algorithm is O(n2).

IV. EXPERIMENTS AND RESULT ANALYSIS

In this section, we present the experimental results of our leakage

power optimization framework for aging-bounded high-level synthe-

sis.

We first show the NBTI-induced delay degradation and leakage

power characterization of function units. The work is based on a

45nm technology and NCSU FreePDK 45nm cell library [20] is used

for the characterization. The threshold voltages are set as: LVT =

0.200V , MVT = 0.315V , HVT = 0.423V , while the supply voltage

is Vdd = 1.1V . Figs. 9 and 10 show the example of characterization

results for a set of function units in our resource library, including two

16-bit adders (bkung16 and kogge16), two 32-bit adders (bkung32 and

kogge32), two 8-bit×8-bit multipliers (pmult8x8 and booth9x9). Note

that the characterization of other components (such as multiplexer and

registers) are not depicted here due to space limitation.

From Fig. 9 we can see that the differences between the initial

delays of function units with different Vths are significant, as the

NBTI-induced degradation (shown by the error bars) goes on, the

“anticipated” degraded delays are getting much closer. Meanwhile,

Fig. 10 lists the leakage power of function units at the time of first

use and the service time of 10 years, under different initial threshold

voltages. Note that the y axis is logarithmically plotted, which shows

6:;

6:<

6:=

6:>

�

�
�
$

��5�0
� ?�!�.$�0
� 7����0
�

��@�6�����

��@��6������

6

6:�

6:4

6:A

6:%

6:&

B�����; B����A4 �).
��; �).
�A4 '$.�
=9= ���
�>9>

�
�
��
�

#
�

 !������
"����

Fig. 9. NBTI-induced delay degradation of function units with different
initial threshold voltages, at the circuit lifetime of 10 years. The pattern-filled
bars show the original delays without degradation, and the error bars show
the NBTI-induced degradations.

�:66D�6A

�:66D�64

�
%
�
�

#&

$

��5�0
� ?�!�.$�0
� 7����0
�

��@�6�����
��@��6������

�:66D�6;

�:66D�6&

�:66D�6%

B�����; B����A4 �).
��; �).
�A4 '$.�
=9= ���
�>9>

	
�
�
�
�
�
�

�
�

 !������
"����

Fig. 10. Leakage power of function units with different initial threshold
voltages. The y axis is logarithmically plotted. The pattern-filled bars show
the leakages at the circuit lifetime of 10 years, and the error bars show the
change of leakage power due to NBTI-induced Vth degradation.

the potentials of leakage power savings if high-Vth units are used

instead of low-Vth units, and this motivates the resource rebinding

work presented in this paper.

With the NBTI-aware multi-Vth resource library characterized,

our proposed resource rebinding algorithm for leakage minimization

is applied on a set of industrial HLS benchmarks. The profile of

benchmarks, as well as the initial scheduling results, are listed in

Table I, where the 2nd and 3rd columns show the number of nodes

and edges in each benchmark, respectively. The 4th column shows

the number of control steps resulted from the initial scheduling, and

the last 2 columns show the number of resource instances used in

each schedule.

The proposed resource binding algorithm is implemented in C++

and experiments are conducted on a Linux workstation with Intel

Xeon 3.2GHz processor and 2GB RAM. All the experiments run in

less than 10s of CPU time. All the leakage reduction values in the ex-

perimental results are computed against single-Vth implementations

using only low-Vth units.

Fig. 11 shows the comparison of total leakage energy reduction

with the traditional aging-unaware multi-Vth assignment. In the

aging-unaware approach, multi-Vth assignment is performed accord-

ing to the original (non-degraded) delays of function units, yielding

an average leakage reduction of 14%, while in our proposed aging-

bounded approach, the degraded delays at the lifetime bound of 10

years are used to guide the resource rebinding, and an average leakage

reduction of 26% is achieved. The comparison shows that with the

proposed aging-bounded approach, the leakage power consumption

TABLE I
BENCHMARK PROFILE AND INITIAL SCHEDULING RESULTS

Name # nodes # edges # CCs # adders # multipliers

PR 44 132 12 4 2

WANG 52 132 14 4 2

MCM 96 250 18 7 3

HONDA 99 212 15 6 6

DIR 150 312 16 8 8

STEAM 222 470 19 11 10

CHEM 348 729 29 9 10

8C-1

693
Authorized licensed use limited to: Tsinghua University Library. Downloaded on July 12,2010 at 11:50:59 UTC from IEEE Xplore. Restrictions apply.

A6E

%6E

&6E

�
�
�
�

(
�
�
!
�
��
�
�

(��
��/
�5��� (��
����.
!�!

6E

�6E

46E

'� F(�" ?�? 7G�*(* � 	�D(? �7D?

	
�
�
�
�
�
�

'
�
�

����������

Fig. 11. Total leakage energy reduction under a lifetime bound of 10 years,
compared with the traditional aging-unaware multi-Vth assignment.

A6E

%6E

&6E

;6E

�
�
�
�

(
�
�
!
�
��
�
�

&�H��� �6�H��� �&�H���

6E

�6E

46E

'� F(�" ?�? 7G�*(* � 	�D(? �7D?

	
�
�
�
�
�
�

'
�
�

����������

Fig. 12. Leakage reduction against aging-bounded single-Vth approach with
different lifetime bounds.

46E

4&E

A6E

A&E

%6E

%&E

�
�
�
�

(
�
�
!
�
��
�
�

�I?�0
� �I7�0
� �I?I7�0
�

6E

&E

�6E

�&E

46E

'� F(�" ?�? 7G�*(* � 	�D(? �7D?

	
�
�
�
�
�
�

'
�
�

����������

Fig. 13. Leakage reduction against aging-bounded single-Vth approach with
different threshold voltage settings, under a lifetime bound of 10 years.

can be more effectively reduced without affecting the attainable

circuit lifetime.

Fig. 12 explores the impact of different lifetime bounds at the

effectiveness of the proposed leakage reduction technique, against

aging-bounded single-Vth implementations. The average leakage en-

ergy reduction under lifetime constraints of 5, 10 and 15 years, are

11%, 26% and 32%, respectively. This suggests that higher lifetime

bounds are more favorable for leakage energy reduction. The reason

behind is that as the circuit running time gets longer, the delay

difference between high-Vth and low-Vth units decreases, so more

high-Vth units can be used in the design under higher lifetime bounds.

However, higher lifetime bounds also require more guardbanding

for the larger overall degradations, yielding lower clock frequencies.

Therefore, the tradeoff between leakage power reduction and circuit

performance need to be balanced.

Fig. 13 explores the impact of different settings of threshold

voltage levels at the effectiveness of the proposed leakage reduction

technique, against aging-bounded single-Vth implementations. In the

comparison experiments, threshold voltage levels are reduced to 2,

where only Medium-Vth units or High-Vth units can be used for

the replacement. The attainable lifetime bound is set as 10 years.

The average leakage energy reductions under three threshold voltage

settings L-M-Vth (using LVT and MVT), L-H-Vth (using LVT and

HVT), and multi-Vth (using all three levels) are 16%, 17% and

26%, respectively. This comparison is raised by the consideration of

manufacturing overhead of the multi-Vth technology. As total leakage

reduction is determined by both the number of units replaced and

the leakage saving of each single replacement, if only two levels of

threshold voltages are allowed, the results depend on which factor

dominates. Fig. 13 shows that in some cases, L-M-Vth scheme beats

L-H-Vth scheme because more LVT units can be replaced with MVT

units, while in other cases L-H-Vth is more favorable, because the

leakage saving brought by HVT units is more significant. This leads

to the optimal second threshold voltage selection problem that is left

to be explored in future work. Nevertheless, multi-Vth design using

three levels of threshold voltages can exploit more benefits at the cost

of extra manufacturing overhead.

V. CONCLUSION

This paper investigates the impact of different threshold voltages on

the rates of circuit degradation due to NBTI, from the view of high-

level synthesis. As the delay difference between low-Vth circuits and

high-Vth equivalents diminishes with degradation, more high-Vth can

be used in the design, bringing in great potentials for leakage power

savings. The paper then proposes a framework to accurately evaluate

the delay degradation as well as the leakage power for architectural

units, to perform the synthesis under a new metric Lifetime Bound,

and to optimize the leakage power consumption during the new

synthesis process. Experimental results show that, compared to tra-

ditional aging-unaware multi-Vth assignment approach, the proposed

techniques can more effectively reduce the leakage power under the

given attainable circuit lifetime bound.

REFERENCES

[1] S. V. Kumar, C. H. Kim, and S. S. Sapatnekar. An analytical model for
negative bias temperature instability. In ICCAD, 2006.

[2] S. Bhardwaj et al. Predictive modeling of the NBTI effect for reliable
design. In CICC, 2006.

[3] K. Cao et al. BSIM4 gate leakage model including source-drain partition.
In IEDM, 2000.

[4] K. Kang, H. Kufluoglu, M. A. Alain, and K. Roy. Efficient transistor-
level sizing technique under temporal performance degradation due to
NBTI. In ICCD, 2007.

[5] S. V. Kumar, C. H. Kim, and S. S. Sapatnekar. NBTI-aware synthesis
of digital circuits. In DAC, 2007.

[6] Y. Wang et al. Temperature-aware NBTI modeling and the impact of
input vector control on performance degradation. In DATE, 2007.

[7] Y. Wang et al. Gate replacement techniques for simultaneous leakage
and aging optimization. In DATE, 2009.

[8] W. Shiue and C. Chakrabarti. Low power scheduling with resources
operating at multiple voltages. In IEEE Transactions on Circuits and

Systems, 2000.
[9] X. Tang, H. Zhou, and P. Banerjee. Leakage power optimization with

dual-Vth library in high-level synthesis. In DAC, 2005.
[10] K. Khouri and N. Jha. Leakage power analysis and reduction during

behavioral synthesis. In IEEE Transaction on VLSI, 2002.
[11] F. Wang, X. Wu, and Y. Xie. Variability-driven module selection with

joint design time optimization and post-silicon tuning. In ASPDAC,
2008.

[12] L. Zhang and R. P. Dick. Scheduled voltage scaling for increasing
lifetime in the presence of NBTI. In ASPDAC, 2009.

[13] X. Chen et al. Variation-aware supply voltage assignment for minimizing
circuit degradation and leakage. In ISLPED, 2009.

[14] S. Kumar, C. Kim, and S. Sapatnekar. Adaptive techniques for over-
coming performance degradation due to aging in digital circuits. In
ASPDAC, 2009.

[15] A. Tiwari and J. Torrellas. Facelift: Hiding and slowing down aging in
multicores. In MICRO, 2008.

[16] V. Sundararajan and K. K. Parhi. Low power synthesis of dual threshold
voltage CMOS VLSI circuits. In ISLPED, 1999.

[17] V. Huard, M. Denais, and C. Parthasarathy. NBTI degradation: From
physical mechanisms to modeling. In Microelectron. Reliab., 2006.

[18] Synopsys. Liberty NCX. http://www.synopsys.com/.
[19] W.-T. Shiue. High level synthesis for peak power minimization using

ILP. In ASAP, 2000.
[20] NCSU. 45nm FreePDK. http://www.eda.ncsu.edu/wiki/FreePDK.

8C-1

694
Authorized licensed use limited to: Tsinghua University Library. Downloaded on July 12,2010 at 11:50:59 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00540068006500730065002000730065007400740069006e00670073002000610072006500200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e003000200061006e00640020006d0061007400630068002000740068006500200022005200650071007500690072006500640022002000730065007400740069006e0067002000660069006c0065007300200066006f00720020005000440046002000730070006500630069006600690063006100740069006f006e002000760065007200730069006f006e00200034002e0030002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

